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Response of reef fish assemblages to overgrowth of the hydrocoral Millepora complanata by 
the crustose alga Ramicrusta sp. 

 

 
Introduction 
 

Habitat selection and the degree to which organisms associate with specific surroundings 

strongly influences community structure (McPeek 1996; Morin 1999). The degree of habitat 

association may affect competition (Schroder and Rosenzweig 1975; Grosberg 1981; Rodriguez 

1995; Munday 2001), predation (Sih 1982; Beukers and Jones 1997; Heithaus and Dill 2002), 

and access to prey (Sebens 1981; McIvor and Odum 1988; Halaj et al. 1998; Ward et al. 1998). 

Organisms that closely associate with particular habitats are important to consider in 

conservation management because such specialization may increase vulnerability to 

environmental change (Munday 2004; Safi and Kerth 2004; Wilson et al. 2008). Dependence 

upon a specific locale for survival can decrease the likelihood that an organism will adapt by 

finding another suitable habitat if the original habitat deteriorates. In response to large 

disturbances, substantial declines in habitat specialists have been documented in coral reef fishes 

(Kokita and Nakazono 2001; Munday 2004; Prachett et al. 2004; Wilson et al. 2008), bats (Safi 

and Kerth 2004), insects (Korkeamäki and Suhonen 2002) and mammals (Harcourt et al. 2002), 

among others.  Protecting the associated habitat of specialists is therefore crucial in conserving 

the community structure of a given ecosystem.     

In coral-reef ecosystems, fish assemblages are reliant upon seafloor organisms and 

structures for their survival (Beukers and Jones 1997; Almany 2004). Benthic structural 

complexity substantially affects the community structure of obligate coral-dwelling fishes 

(Luckhurst and Luckhurst 1978; Munday et al. 1997; Friedlander and Parrish 1998; Bergman et 
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al. 2000; Bozec et al. 2005; Gratwicke and Speight 2005; Wilson et al. 2010). Structurally 

complex habitats, such as corals, provide a greater number of shelter sites for prey species 

(Luckhurst and Luckhurst 1978; Hixon and Beets 1993; Friedlander and Parrish 1998) which can 

decrease predation rates and increase the survivorship of fishes (Hixon 1991; Beukers and Jones 

1997; Almany 2004). In addition to shelter, fishes may also depend upon reef-building 

organisms for food. For example, abundance and species richness of corallivorous (coral-eating) 

butterflyfish (Family Chaetodontidae) have been positively correlated with the abundance of live 

coral (Bozec et al. 2005).   

A prominent threat to the availability of habitat for reef fishes is overgrowth of corals by 

macroalgae (seaweeds). In areas such as the Caribbean and Western Pacific, natural 

disturbances, pollution, and overfishing have altered oceanic conditions to create a favorable 

environment for algae to outcompete coral (Banner 1973; Maragos 1985; Hughes et al. 1987, 

Hughes 1994; Stimson et al. 2001; Mosley and Aalsbersberg 2003; Paddack et al. 2009a). Over 

time, algal overgrowth has lead to large declines in live coral cover, habitat complexity, and 

benthic diversity throughout affected regions (Maragos 1985; Sebens 1994; McCook 1999; 

Stimson et al. 2001; Alvarez-Filip et al. 2009). Most studies have focused on the response of fish 

communities to coral bleaching (Kokita and Nakazono 2001; Jones et al. 2004; Munday 2004; 

Wilson et al. 2008) or crown of thorns starfish (Acanthaster planci) outbreaks (Munday et al. 

1997; Wilson et al. 2008). Few studies have examined the response of fish-habitat associations to 

algal overgrowth of corals (Feary et al. 2007). Better understanding of this response would help 

managers and conservationists better determine the resilience of fish assemblages on algal-

dominated reefs.  
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Within selected areas of the Caribbean, a new alga has been discovered to be 

outcompeting coral for space. In Jamaica, a recently described crustose red alga, Ramicrusta 

textilius, has been documented overgrowing coral (Pueschel and Saunders 2009). In Lac Bay, 

Bonaire, an unidentified species of Ramicrusta (Ramicrusta sp.) has been found overgrowing 14 

species of coral (Eckrich et al. in press). It is currently unknown whether this genus of algae is 

native or invasive to the Caribbean. Ramicrusta nanhaiensis, a relative of R. textillius, originates 

from the Pacific Ocean, opening the possibility that the Ramicrusta observed throughout the 

Caribbean could be an invasive species (Pueschel and Saunders 2009). At the present time, no 

data are available on the extent, causes, and effects of this algal genus overgrowing Caribbean 

corals. 

The ability of crustose algae to compete with coral for living space is currently poorly 

understood. Naturalist descriptions by Finckh (1904) and van de Hoek (1969) provide evidence 

that crustose algae can overgrow corals, inducing coral mortality. The presence of Ramicrusta 

overgrowth in Jamaica and Bonaire demonstrates a need to understand competition between 

crustose algae and corals, as well as the effects of this interaction on other species that rely upon 

live coral. Overgrowth of coral reefs by Ramicrusta could potentially have harmful 

consequences for reef communities, as previously documented in the Caribbean and Western 

Pacific (Banner 1973; Maragos 1985; Hughes et al. 1987, Hughes 1994; Sebens 1994; McCook 

1999; Stimson et al. 2001; Mosley and Aalsbersberg 2003; Paddack et al. 2009a). 

The goal of this study was to examine the effects of Ramicrusta sp. overgrowth of coral 

on associated fish assemblages. Reef fishes associated with the hydrozoan fire coral (Millepora 

complanata) were observed over a gradient of Ramicrusta overgrowth of M. complanata in Lac 
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Bay, Bonaire. Millepora complanata is a source of habitat structure for multiple Caribbean reef 

fish species, most notably blennies (Family Blenniidae) (Nursall 1976) and damselfishes (Family 

Pomacentridae) (Clarke 1977; Waldner and Robertson 1980). Millepora complanata is also a 

structurally diverse coral (Clarke 1977), making it capable of supporting high abundance and 

diversity of fishes (Friedlander and Parrish 1998).  

I predicted that increases in Ramicrusta overgrowth of M. complanata would have 

negative consequences on the abundance and diversity of associated reef-fish assemblages in Lac 

Bay, Bonaire. Abundance and diversity were examined over a gradient of Ramicrusta 

overgrowth, and all three components of diversity (richness, evenness, and composite diversity) 

were measured at the family level (because identification to species was often unavailable). The 

following specific hypotheses were tested:  

H1: The abundance of nearby fish will decrease as the percent Ramicrusta overgrowth of 

M. complanata increases. 

H2: The family richness, evenness, and composite diversity of nearby fishes will decrease 

as the percent Ramicrusta overgrowth of M. complanata increases. 

 

 

 

 

 



 

 

5 

 

Materials and methods  

 

Fig. 1 Image of 13 transect sites (represented as thumbtacks) within Lac Bay, Bonaire (Google 
Earth 2010). The reef crest is designated by the white line to the east of the transect sites. 

 

Study site  

Lac Bay (12° 6' 4.18"N, 68°13' 33.01"W) is located on the windward (eastern) side of 

Bonaire, a southern Caribbean island which lies 80 km off the coast of Venezuela (Fig. 1). The 

back reef of the bay contains an abundance of the fire coral, Millepora complanata, near the reef 

crest. Recently, Ramicrusta has been observed overgrowing M. complanata throughout the bay 

(Eckrich et al. in press), making it the second area in the Caribbean where the presence of this 

crustose alga has been documented.  
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Observational design 

A total of 13 transects were surveyed along the back reef of Lac Bay (Fig. 1). Transects 

sites were chosen using Google Earth to locate 20 equidistant points (approximately 62 m apart) 

125 m northwest of and parallel to the contour of the reef crest. Seven points located in sand 

patches were subsequently disregarded, resulting in GPS starting coordinates for 13 transects.  

During October 2010, surveys were conducted at the 13 transect sites. Data were 

collected between the depths of 0.5 and 1.5 m during midday (0900 – 1400). At each site, a 

single 2 m-wide visual belt transect (Brock 1954) was run by following a compass heading 

toward and perpendicular to the reef crest (approximately 135o). Each transect ended when wave 

action was too rough to continue data collection (approximately 25-30 m from reef crest), 

making each transect roughly 100 m in length.  

Millepora complanata is abundant in the shallow waters of Lac Bay and is often found in 

areas of intense wave action near the reef crest (Lewis 2006). Colonies are often densely packed 

due to the high rate of survival for M. complanata fragments (Lewis 2006). A total of 170 coral 

heads of M. complanata were randomly censused along the 13 transects. Random numbers 

between 2 and 10 (k) were used to determine which heads were surveyed (every kth head).   

  When an observer came within 1 m of a selected M. complanata, a 1-min period would 

begin to allow fish to recover from any observer disturbances. During this time period, 

volumetric dimensions of the coral (cm) and percent Ramicrusta overgrowth were estimated 

visually. Percent algal overgrowth was scored as follows:  
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0 = No Overgrowth (0%) 

 1 = Minimal Overgrowth (1-25%) 

 2 = Partial Overgrowth (26-50%) 

 3 = Moderate Overgrowth (51-75%) 

 4 = Maximum Overgrowth (76-100%) 

After the 1-min recovery period, the number of fish in association with M. complanata 

was recorded at the family level. This study assumed that fish associated with M. complanata 

would live within close proximity of the coral. Therefore, fish association was consequently 

defined as individuals within 0 to 40 cm of M. complananta. The number and family of fishes 

were recorded from all sides and on top of each coral head.  

Data analysis 

 Total fish abundance was tallied for each censused M. complanata and averaged within 

algal overgrowth categories. Family richness was measured as the total number of families 

identified at each M. complananta head. Composite diversity was calculated using the Shannon-

Wiener Diversity Index (Pielou 1966):  

H’ = ∑ pi ln(pi)  

where pi is the proportion of individuals observed within each family. Evenness was calculated 

using the Shannon-Wiener Evenness Index (Pielou 1966):  

E = H’/ ln(S)  
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where S is family richness (number of families present).   

Normality was tested for all four variables (abundance, richness, composite diversity, and 

evenness) using Anderson-Darling tests. Because all data were not normally distributed, each 

variable was tested for differences across algal overgrowth categories by one-way nonparametric 

Kruskal-Wallis tests (α = 0.05). Differences among categories detected by Kruskal-Wallis tests 

were followed by pairwise Mann-Whitney U-tests (α = 0.05).  

The potential influence of M. complanata volume (estimated in L) on associated fish 

assemblages was estimated through correlation analysis. Coral volume was correlated to fish 

abundance and diversity (richness, evenness, and composite diversity). Differences in estimated 

coral volume with respect to Ramicrusta overgrowth category were also examined through 

Kruskal-Wallis tests (α = 0.05) followed by pairwise Mann-Whitney U-tests (α = 0.05). To 

account for coral volume variability, fish density (fish/L) was calculated and compared among 

overgrowth categories by Kruskal-Wallis tests (α = 0.05). All data analysis was completed using 

Minitab® Statistical Software (V.16).  

Results  

A total of 170 coral heads of Millepora complanata and 11 fish families were observed 

across a spectrum of algal overgrowth categories ranging from 0 to 100% Ramicrusta cover. 

Damselfish (Family Pomacentridae) and gobies (Family Gobiidae) were the most abundant fish 

surveyed (n=199 and 129) (Appendix A). The majority (88%) of M. complanata observed 

exhibited some degree of Ramicrusta overgrowth. The highest proportion (32%) of  
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M. complanata was found to be maximally overgrown (76 – 100%) by Ramicrusta, and the 

lowest proportion (15%) was observed within the no overgrowth category (Fig. 2).  

 

Fig. 2 Frequency distribution of algal overgrowth categories for 170 heads of M. complanata. 

 

Fish Abundance  

Across the gradient of algal overgrowth, the abundance of fish increased from 0 to 75 % 

Ramicrusta coverage (Fig. 3). At maximal overgrowth (76-100%), fish abundance declined to 

values similar to those with no overgrowth (Fig. 3). Significant differences in abundance were 

detectable among algal overgrowth categories (Kruskall-Wallis: χ2 [4, n = 170] = 13.28, p=0.01). 

Differences in the median abundance of fish were detected between 0 – 25% and 26% - 100% 

Ramicrusta coverage (Mann-Whitney U-test: W=3007.5, two-sided p = 0.001). Coral heads 26 – 

100% overgrown by Ramicrusta had 1 ± 1 (mean ± 95% CI) more fish present than coral heads 0 

– 25% overgrown.  
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Fig. 3 A) Abundance, B) richness, C) composite diversity, D) evenness (mean+ SEM) of fish 
associated with M. complanata in Lac Bay, Bonaire, across a gradient of Ramicrusta 
overgrowth. Difference in abundance between 0-25% and 26-100% overgrowth was significant 
at p = 0.01 (**). 
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Fish Diversity 

Fish family richness, evenness, and composite diversity showed trends similar to fish 

abundance. Mean values of all three measures generally increased from 0 to 75 % Ramicrusta 

overgrowth, followed by a decline at maximal overgrowth (76-100%) (Fig. 3). Significant 

differences in all three components of diversity were not detected among overgrowth categories 

(Kruskall-Wallis: richness:  χ2 [4, n = 134] = 6.9, p=0.14; composite diversity: χ2 [4, n = 134] = 

5.9, p=0.21; evenness: χ2 [4, n = 134] = 4.3, p=0.37). 

Influence of Millepora complanata volume 

Visual estimates of coral volume were positively correlated with fish abundance, but not 

with fish diversity (Fig. 4). Abundance was moderately associated with the volume of M. 

complanata (r=0.19, n=131, p <0.0001). While Pearson’s correlation coefficients detected a 

positive relationship between fish diversity and volume, the correlations were not statistically 

significant (richness: r=0.17, n=100, p= 0.094; composite diversity: r=0.15, n=100, p=0.14; 

evenness: r=0.12, n=100, p=0.22).  

 Larger heads of M. complanata were observed more frequently at higher levels of 

Ramicrusta overgrowth (Fig. 5). Mean coral volume was significantly different between 

moderate to high levels of overgrowth (26-100 % Ramicrusta cover) and low levels of 

overgrowth (0-25 % Ramicrusta cover) (Mann-Whitney U-test: W=962,  two-sided p-value 

<0.0001). M. complanata volume was estimated to be 58 ± 23 L (mean ± 95% CI) larger at 26-

100 % Ramicrusta overgrowth, than 0-25 % overgrowth. Increasing M. complanata volume was 

also positively correlated with increasing Ramicrusta coverage (r=0.25, n=130, p=0.004). 
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Fig. 4 Comparison of Ramicrusta overgrowth categories and estimated Millepora complanata 
volume (mean + SEM). Mean M. complanata volume was significantly different between 0-25% 
Ramicrusta overgrowth and 26-100% overgrowth at p<0.0001 (***). 

 

 Fish density was inversely associated with Ramicrusta overgrowth (Fig. 6). At coral 

heads where Ramicrusta was not present, the greatest density of fish was observed (0.49 fish/L). 

However, differences in fish density among algal overgrowth categories were not statistically 

significant (Kruskall-Wallis: χ2 [4, n = 130] = 1.67, p=0.80). 

 

Fig. 5 Fish density (number of fish/L) with respect to Ramicrusta overgrowth categories.  
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Discussion 

The predicted decreases in fish abundance and diversity (family richness, evenness, and 

composite diversity) with increasing Ramicrusta overgrowth were not evident in this study. High 

variance was apparent among algal cover groups, indicating that larger sample sizes would be 

required to detect whether statistically significant differences exist. Nonetheless, it was common 

for all response variables to peak at moderate levels (51-75%) of overgrowth.  If this trend 

proved to be correct, then one interpretation would be that habitats which contain an even mix of 

corals and crustose algae provide higher complexity than habitats dominated by either one.  

Given that fish abundance and diversity tends to increase with habitat complexity (Friedlander 

and Parrish 1998; Holbrook et al. 2002), this interpretation would explain the unimodal 

relationship between Ramicrusta and measures of fish abundance and diversity.  Alternatively, 

additional factors not assessed in this study may be involved in structuring fish assemblages 

associated with Millepora complanata. One such factor is the role of coral volume and structural 

complexity on the number of fish and fish families.  

The observational design of this study sampled M. complanata regardless of coral head 

size or structural complexity. This constraint is problematic because it confounded my ability to 

compare fish assemblages among coral heads of different physical characteristics. Corals that are 

larger in volume tend to be significantly more structurally complex (Holbrook et al. 2002). 

Increased structural complexity has been correlated with higher fish abundance and richness 

(Friedlander and Parrish 1998; Holbrook et al. 2002), which is likely due to the increased 

number of holes available for shelter (Hixon 1991; Hixon and Beets 1993; Friedlander and 

Parrish 1998). Visual estimates of M. complanata volume completed throughout this study 
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demonstrated a positive correlation with fish abundance (Fig. 4), which indicates that the size of 

M. complanata may have influenced the composition of fish assemblages. An additional 

confounding factor was that M. complanata heads that were minimally overgrown with 

Ramicrusta were significantly smaller in volume, which could potentially account for the low 

abundance and diversity of fishes observed in the 0% and 1-25% overgrowth categories. 

Calculating fish density per unit volume of M. complanata accounted for the naturally 

confounding pattern of Ramicrusta overgrowth increasing with coral head size.  However, such 

density comparisons among Ramicrusta overgrowth categories were statistically insignificant 

(Fig. 5). If the observed trend of fish density varying inversely with Ramicrusta overgrowth was 

nonetheless biologically real, then the implication would be that the presence of Ramicrusta on 

M. complanata has a negative effect on reef-fish assemblages.   

Nonetheless, structural complexity did not appear to differ between colonies of similar 

size at different levels of overgrowth. In response to changes in seascape, substantial declines in 

fish assemblages have been largely correlated with reduction of live coral cover and structural 

complexity (Sano et al. 1984; Kokita and Nakazono 2001; Munday 2004; Pratchett et al. 2004; 

Graham et al. 2006; Pratchett et al 2008; Wilson et al. 2008; Paddack et al. 2009a). However, 

Wellington and Victor (1985) found that, in response to the 1982-1983 coral bleaching event 

associated with El Niño, damselfish abundance was unaffected by declines in live coral cover. 

This phenomenon was attributed to insignificant differences between the topographic complexity 

of dead and live coral, implying that these fish use coral as habitat regardless whether it is living 

or not (Wellington and Victor 1985). Given that damselfish were the most abundant family 

observed in the present study (199 fish observed), it is likely that differences detected in fish 
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assemblage characteristics were insignificant because structural complexity was similar between 

M. complanata with high and low Ramicrusta overgrowth.  

An additional factor in coral structural complexity is how long Ramicrusta has been 

established on M. complanata. While this study did not examine the growth rates of Ramicrusta, 

there is evidence that indicates the majority of M. complanata observed were recently 

overgrown. Only one observed M. complanata was fully overgrown by Ramicrusta. Complete 

overgrowth by algae induces coral mortality (McCook et al. 2001). Following their death, corals 

become eroded by biological and physical processes, reducing their overall structural complexity 

(Sano et al. 1984; Sheppard et al. 2002). Due to this phenomenon, it is difficult to identify M. 

complanata that is completely overgrown in the field. Lac Bay contains large rubble fields which 

are predominantly covered with Ramicrusta (personal observation). It is possible that these fields 

could contain heads of M. complanata that have been eroded to a point where they are no longer 

identifiable. Since this study focused on M. complanata that could be indentified visually, there 

is potential for results to be skewed towards recent algal overgrowth. It is therefore possible that 

prolonged and complete coverage of M. complanata by Ramicrusta could have a more 

substantial effect on fishes associated with M. complanata.      

The lack of statistical significance between fish assemblages and Ramicrusta overgrowth 

of M. complanata does not necessarily negate the potential ecological importance of overgrowth. 

Initial evidence for the minimal impact of recent Ramicrusta on structural complexity 

corroborates the idea that changes in habitat complexity affect the structure fish assemblages 

associated with M. complanata. While the impact of Ramicrusta on fish assemblages remains 

unclear, this study confirms that the alga has a dominant presence overgrowing M. complanata 
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communities. Much is still unknown about Ramicrusta and its ultimate direct and indirect effects 

on coral-reef ecosystems.   
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APPENDIX A 

Table 1. Total number of fish counted in each observed fish family. 

Fish Family (common name) Number of Fish Observed  

Pomacentridae (damselfishes) 199 

Gobiidae (gobies) 129 

Labridae (wrasses) 41 

Blenniidae (blennies) 15 

Scaridae (parrotfishes) 9 

Acanthuridae (surgeonfishes) 4 

Grammatidae (basslets) 2 

Holocentridae (squirrelfishes) 1 

Serranidae (groupers)  1 

Lutjanidae (snappers) 1 

Balistidae (triggerfishes) 1 
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